Our 3D Modeling Toolkit - Your Software Perfected

What is C3D Modeler?

SDK for Constructing and Editing 3D Models

B-rep and polygons

Main Features

Geometric Modeling Operations

Main Features

Planar Projections

Main Features

Geometric Calculations

The surface area
$$S = \iint_{\Omega} \sqrt{g_{11}g_{22} - g_{12}^2} du dv$$
.

Volume
$$\mathbf{F}(\mathbf{r}) = \mathbf{r}$$

$$V = \frac{1}{3} \iiint_{V} \nabla \cdot (\mathbf{r}) dV = \frac{1}{3} \iint_{S} \mathbf{m} \cdot \mathbf{r} dS = \frac{1}{3} \iint_{\Omega} \mathbf{m} \cdot \mathbf{r} \sqrt{g_{11}g_{22} - g_{12}^{2}} du dv.$$

Mass
$$M = \rho V$$

The center of mass
$$\mathbf{F}(\mathbf{r}) = x\mathbf{r}$$
, $\mathbf{F}(\mathbf{r}) = y\mathbf{r}$, $\mathbf{F}(\mathbf{r}) = z\mathbf{r}$

$$x_c = \frac{1}{M} \iiint_V \rho x dV$$
, $y_c = \frac{1}{M} \iiint_V \rho y dV$, $z_c = \frac{1}{M} \iiint_V \rho z dV$

Moments of inertia

$$J_{xx} = \iiint_{V} \rho(y^2 + z^2) dV$$
, $J_{yy} = \iiint_{V} \rho(z^2 + x^2) dV$, $J_{zz} = \iiint_{V} \rho(x^2 + y^2) dV$

$$J_{xy} = J_{yx} = \iiint_V \rho \, xydV \,, \quad J_{yz} = J_{zy} = \iiint_V \rho \, yzdV \,, \quad J_{zx} = J_{xz} = \iiint_V \rho \, xzdV$$

$$\mathbf{J} = \begin{bmatrix} J_{xx} & -J_{xy} & -J_{xz} \\ -J_{yx} & J_{yy} & -J_{yz} \\ -J_{zx} & -J_{zy} & J_{zz} \end{bmatrix}$$

Principal central moments of inertia

$$\mathbf{J} = \begin{bmatrix} J_{11} & 0 & 0 \\ 0 & J_{22} & 0 \\ 0 & 0 & J_{33} \end{bmatrix}$$

$$\mathbf{J} \cdot \mathbf{e} - \lambda \mathbf{e} = 0$$

$$\lambda^3 - I_1\lambda^2 + I_2\lambda - I_3 = 0$$

What's New?

Removing Holes

Removing Fillets

Modifying Fillets

Direct Modeling

Better Casting Radii Construction

Extruding Contour to the Nearest Body

2016

2017

Extruding Multiple Contours

Intersections support implemented

Extruding Sketch to a Couple of Surfaces

Both surfaces lie on one side

Extruding Sketch to a Couple of Surfaces

Specifying of slopes is available now!

Extruding Sketch Consistent with Surface

+ smooth sketch crossing
3D Labs within direction change

Creating Lofted Bodies

Improved with use of sections

C3D Labs and several guiding paths

Creating Lofted Bodies

You can build bodies based on the most difficult sections!

Sheet Metal Bends Update

They are performed even for plenty edges

Bends and Unbends of Sheet Metal Bodies

an **ASCON** company

Mid-Surface Shells for Thin-Walled Solids

an **ASCON** company

Mid-Surface Shells for Thin-Walled Solids

Options:

- single
- multiple
- all edges (offset = d)

0<t<d (0.5d, 0.25d, 0.75d)

User Setup for Collision Detection

Find all collisions or stop when the first one is determined

Tree-Structure Storage of 3D Model

Opens up new opportunities for separate reading of geometric model objects

an ASCON company

Tree-Structure Storage of 3D Model

Reading objects by selection, type or size

Multi-threaded Modes Realized

Calculating planar projections, tessellation and mass inertia properties,

C3D Labs converting models

an ASCON company

Significant Upgrades

- Merger manager for operations with edges & faces
- Samples of working with user attributes
- Improved performance in Boolean operations
- Accelerated building NURBS with large sets of points

Future Plans

Future Plans for C3D Modeler

Improving Fillets

+ NEW functionality for filleting faces

Future Plans for C3D Modeler

Creating Reinforcement Ribs for Sheet Metal Bodies

Future Plans for C3D Modeler

Updating Surface Modeling Operations

+ implementing smoothness manager for NURBS surfaces

an ASCON company

Thank You!

Arkadiy Kamnev

Marketing Manager

kamnev@c3dlabs.com

C3D Toolkit 2017

Technical Support Request Statistics

Bug Fixing

Smooth Joining of Filleted Surfaces

Creating Lofted Bodies

an **ASCON** company

Event Handler for Collision Detection

```
struct cdet query
 enum cback res ///< Result code of the callback function</pre>
     CBACK VOID
   , CBACK_SUFFICIENT ///< This code means that an app stops collision query for given
     CBACK SKIP
     CBACK BREAK
    CBACK SEARCH MORE = CBACK VOID ///< This code notifies a collision detector to con
 };
 enum message ///< Code of notification</pre>
     CDET QUERY STARTED // The collision query is started for the all solids
    CDET STARTED
                         // The collision query is started for the given pair
                         // Collision detector complete searching a collisions for the gi
     CDET FINISHED
                        // The collided pair of objects founded.
    CDET INTERSECTED
                         // Touched faces has been founded with no penetration of the sol
   , CDET TOUCHED
```


